Detection of cell-free circulating tumor DNA in patients with glioblastma undergoing treatment with first-line chemoradiotherapy

  • STATUS
    Recruiting
  • participants needed
    30
Updated on 19 February 2024

Summary

Glioblastoma (GBM) is the most common primary brain tumor in adults and is uniformly fatal. During standard adjuvant treatment for GBM following initial surgical resection of the tumor, patients are treated with a combination of radiation and chemotherapy. During and after this adjuvant treatment, patients are monitored for disease progression with serial magnetic resonance imaging (MRI) scans of the brain. Unfortunately, radiographic changes detected by MRI are often nonspecific and slow to change, even in the face of progressing or regressing disease. As a result, it can be difficult to discriminate between pseudoprogression, an inflammatory response to radiation, also referred to as "treatment effect", and actual cancer growth. Given the overall poor sensitivity and specificity of neuroimaging to monitor tumors over time, a minimally invasive real-time biomarker that provides quantitative information regarding tumor burden is sorely needed. In multiple non-central nervous system (CNS) tumors, liquid biopsy is increasingly being utilized for non-invasive patient monitoring through blood samples containing plasma cell-free tumor DNA (cfDNA). In 2014, a landmark study demonstrated that hematogenous dissemination of was an intrinsic feature of this GBM, thus raising the possibility of using cfDNA as a means of monitoring disease activity and non-invasively testing for tumor DNA mutations in CNS tumors. However, there are currently no published studies that have used a high sensitivity DNA detection assay to quantify cfDNA in patients with GBM. The ability to reliably detect and quantify cfDNA in GBM as a surrogate of tumor burden and disease activity would lead to significantly improved clinical care for patients with this devastating illness. In this two-part study, we plan to quantify and sequence plasma cfDNA in patients with GBM using a novel high sensitivity DNA detection kit and next generation sequencing assay. In doing so, we aim to to gain preliminary insight into 1) the utility of cfDNA as a non-invasive biomarker of tumor burden in GBM, 2) the degree of concordance between tumor DNA mutations detected in the plasma versus those detected in tissue, and 3) the role of cfDNA as a prognostic marker in GBM. The first part of the study will examine previously collected, banked blood specimens from the UPenn Neurosurgery Tumor Tissue Bank, and the second part will prospectively collect and study serial blood specimens from patients undergoing standard therapy for GBM at Penn.

Details
Condition cancer, glioblastma
Age 99years or below
Clinical Study IdentifierN/A
Last Modified on19 February 2024

Eligibility

How to participate?

Step 1 Connect with a study center
Message sent successfully.
We have submitted the information you provided to the research team at the location you chose. For your records, we have sent a copy of the message to your email address.
If you would like to be informed of other studies that may be of interest to you, you may sign up for Patient Notification Service.
Sign up

Send a message

Enter your contact details to connect with study team

Investigator Avatar

Primary Contact

First name*
Last name*
Email*
Phone number*
Preferred way of contact
Race
Ethnicity
Other language

Additional screening procedures may be conducted by the study team before you can be confirmed eligible to participate.

Learn more

If you are confirmed eligible after full screening, you will be required to understand and sign the informed consent if you decide to enroll in the study. Once enrolled you may be asked to make scheduled visits over a period of time.

Learn more

Complete your scheduled study participation activities and then you are done. You may receive summary of study results if provided by the sponsor.

Learn more

Similar trials to consider

Loading...

Not finding what you're looking for?

Every year hundreds of thousands of volunteers step forward to participate in research. Sign up as a volunteer and receive email notifications when clinical trials are posted in the medical category of interest to you.

Sign up as volunteer
Add a private note
  • abc Select a piece of text.
  • Add notes visible only to you.
  • Send it to people through a passcode protected link.